skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Elazar, Oded"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the past decades of diamond inclusion research, it is now well established that the mantle-derived diamonds are originated either from the lithospheric mantle or sublithospheric mantle. The lithospheric diamonds can be further divided into mainly the peridotitic and eclogitic suites, which can be distinguished based on their inclusion chemistry, carbon, and nitrogen isotopic compositions (1, 2). The parental lithology of sublithospheric diamonds is less well established, partly due to their much lower occurrence relative to the lithospheric diamonds. But there has been growing isotopic evidence for the involvement of subducted materials in the source region of sublithospheric diamonds, such as carbon, boron, oxygen, and iron (3–6). Precipitation of diamonds in the Earth’s mantle has been thought to require the presence of a fluid phase. Being C-O-H, saline, carbonatitic, silicic, or metallic in composition, these fluids were released upon dehydration or partial melting of the parental lithology and migrate through the mantle until they reach diamond saturation point due to either the change in pressure-temperature, or redox conditions. Understanding the parental lithology and fluid composition of different diamonds has primarily relied on their carbon and nitrogen isotope compositions and major/trace element compositions of mineral/fluid inclusions. These tools have been shown to be powerful in many cases but each could have their own disadvantages. Nitrogen isotopes, for example, are less applicable to sublithospheric diamonds due to their low N concentration. Trace element compositions, on the other hand, can be easily manipulated by small mass fractions of low degree-melt that are enriched in incompatible elements. Understanding the diamond-forming fluids and their parental lithology require new tools that can provide a different perspective than the ones discussed above. In this presentation, we show recent developments in adapting Fe, Mg, and K isotope systems to diamond inclusion studies for a better understanding of their formation. These so-called “non-traditional” stable isotope systems were typically developed for large rocks that are not limited by sample amount. In order to adapt them to mineral inclusions tens to hundreds of micrometers in size, we’ve developed dedicated procedures to: 1) clean the diamond surface to remove contamination before extracting individual inclusions; 2) scale down the columns used for chemical purification to minimize blanks; and 3) improving sensitivity on the mass spectrometer to analyze small samples. With a Nu Plasma II at the Carnegie Institution for Science, we have shown to be able to analyze inclusion samples containing as little as 200 ng of Fe (6). With an upgraded Nu Plasma Sapphire at UCLA that is equipped with a collision cell, we are now able to analyze samples with >25 ng Fe. The same strategy has now been expanded to Mg and K isotope systems, for which a low sample limit of 25 ng and 300 ng has been achieved. With examples of Fe and Mg isotopic compositions of ferropericlase in sublithospheric diamond and K isotopic composition of fluid inclusions in fibrous diamonds, we show how isotopic compositions of major elements of mineral/fluid inclusions in diamond bring us new perspectives on their origin. Our tests show promising results to extend existing Mg and Fe protocols to silicate minerals and potentially applying similar strategies to silicon, calcium, and barium isotopes in the future. 
    more » « less
  2. Mantle-derived, low-degree melts, such as kimberlites, carbonate-rich olivine lamproites (CROLS), and cratonic olivine lamproites, are the main carriers of diamonds. They are rare ultramafic, volatile-rich volcanic magmas, generally restricted to stable cratons, and are the deepest-sourced magmas erupted onto Earth’s surface. As hybrid magmas, their formation mechanism and mantle sources remain enigmatic and highly debated, especially the nature of the processes leading to their “enriched” isotopic signatures. The often extreme isotopic compositions of Sr, Nd, Pb, and Hf suggest that the mantle sources of these magmas vary between an ancient and geochemically depleted component and various enriched components. The enriched components could include crustal material recycled into the convective mantle or metasomatized lithospheric mantle. For the latter, discriminating between assimilation by sub-lithospheric magmas during the ascent or melting of element-enriched material from within the lithospheric mantle is paramount concerning petrogenesis. As the stable isotope composition of K, and Ba vary between surface and mantle reservoirs, they are well-suited tools for addressing the cause of different radiogenic isotopic signatures and to better constrain the mantle sources of these important magmas. Here, we use collision cell multi-collector inductively-coupled-plasma mass-spectrometry (MC-ICP-MS) and traditional MC-ICP-MS to conduct the first comprehensive whole-rock K and Ba stable isotope study on a wide range of low-degree mantle-derived melts. All the deep-seated, low-degree melts analyzed here show no correlation between melting/differentiation indices and δ41K and δ138Ba compositions, implying that any isotopic fractionation during melting or eruption was limited and that the different mantle and crustal reservoirs affecting these melts dominate their isotopic variability. Overall, kimberlites show limited δ41K and δ138Ba variability, with a median δ41K of -0.40 ± 0.06‰ (2SE) and δ138Ba of 0.00 ± 0.07‰ (2SE), within error relative to an estimated bulk silicate Earth [(BSE: δ41K= -0.42±0.07‰ (2SD) and δ138Ba=0.03±0.04‰ (2SD)], suggesting significant sublithospheric input. While the sample size is small (N=4), Canadian kimberlites from Lake De Gras display a bi-modal distribution with δ41K values slightly higher and lower relative to BSE, ascribed to crustal and lithospheric contamination. Like kimberlites, South African CROLS show limited K isotope variability with a median δ41K of -0.48 ± 0.02‰ (2SE). Their compositions are non-resolvable from two Mica-Amphibole-Rutile-Ilmenite-Diopside (MARID) xenoliths. The δ138Ba of the CROLS also shows limited variation with a median δ138Ba of 0.00 ± 0.07‰ (2SE), plotting within BSE estimations. Compared to the other low-degree mantle-derived melts, cratonic olivine/leucite-bearing lamproites from West Australia show a wide range in δ41K (-0.97‰ to +0.34‰) and δ138Ba (-0.30‰ to +0.27) values. The observed large K isotopic variation in cratonic lamproites is similar to that observed in post-collisional lamproites and is ascribed to sediment recycling. Argyle lamproites define robust correlations between potassium and barium elemental abundances, and their stable isotopes call for significant hydrothermal fluid-assisted leaching and isotopic fractionation. 
    more » « less